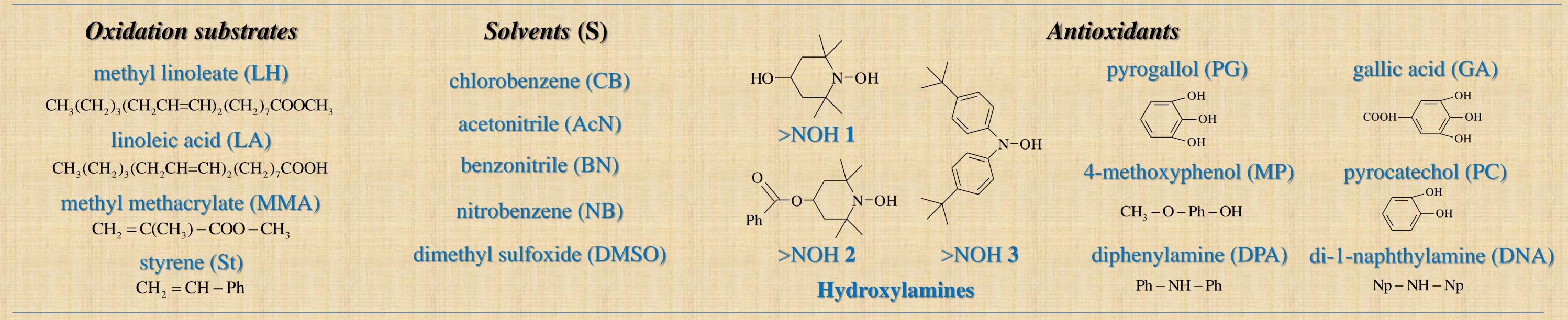


INFLUENCE OF THE MEDIUM ON THE ELEMENTARY STAGES OF THE INHIBITED OXIDATION OF LIPID MEMBRANES' MODELS S. Lednev, I. Moskalenko, A. Sirick, E. Pliss P.G. Demidov Yaroslavl State University, Russia

k_i

Objective: Experimental research of the polar effects during inhibited and uninhibited oxidation of unsaturated compounds modeling lipid membranes' fragments.

Known mechanisms of vinyl compounds (left) and methyl linoleate (right) inhibited oxidation in solution:

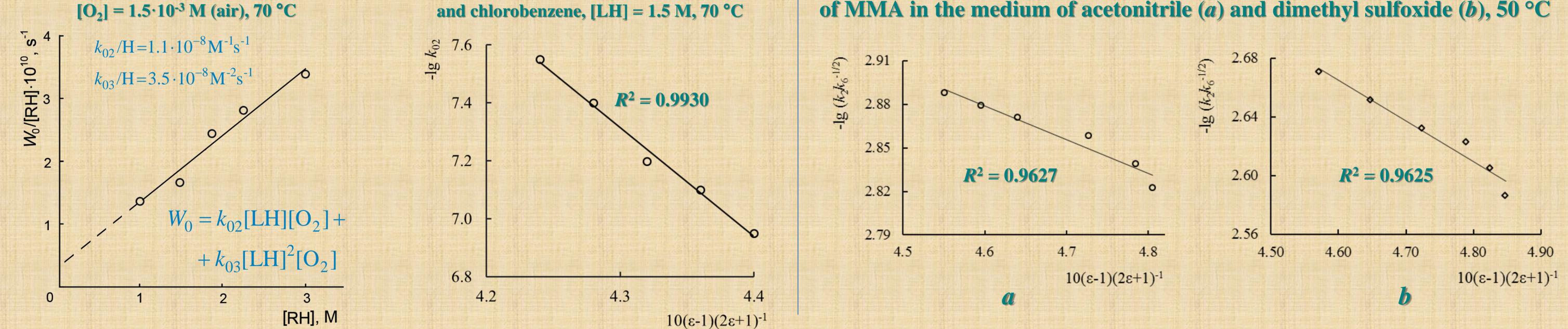

(i)

 k_{i}

Chain initiation in α-olefins:

 $RH + O_2 \xrightarrow{k_{02}} R^{\bullet} + HO_2^{\bullet}$ $2RH + \tilde{O}_2 \xrightarrow{k_{03}} 2R^{\bullet} + \tilde{H}_2O_2$

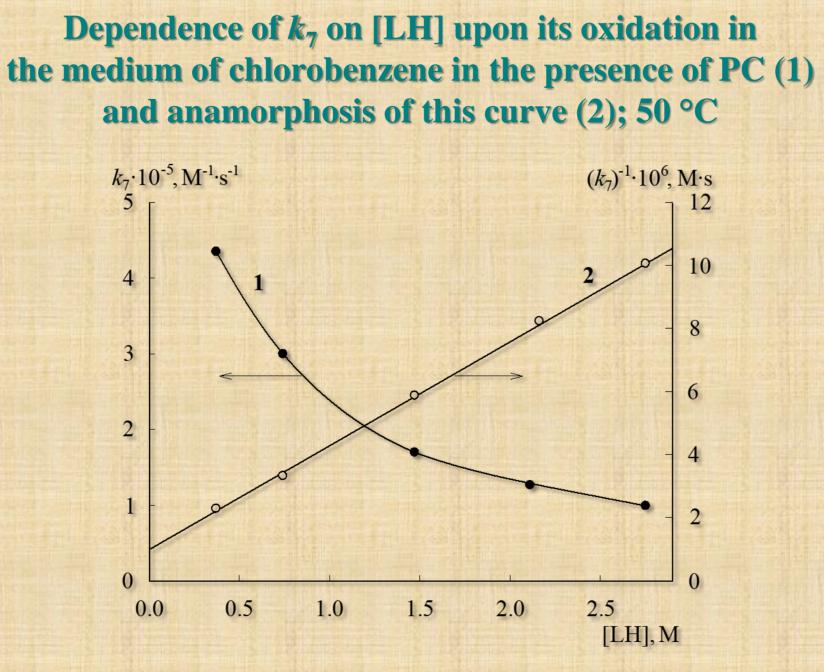
(1)	$M^{\bullet} + O_2 \rightarrow MO_2^{\bullet}$	k_1	(1)	$L^{\bullet} + O_2 \rightarrow LO_2^{\bullet}$	k_1	
(2)	$MO_2^{\bullet} + M \rightarrow MOOM^{\bullet} (\equiv M^{\bullet})$	k_2	(2)	$LO_2^{\bullet} + LH \rightarrow LOOH + L^{\bullet}$	k_2	The Kirkwood-Onsager equation:
(6)	$MO_2^{\bullet} + MO_2^{\bullet} \rightarrow$ molecular products	$2k_{6}$	(6)	$LOOH \rightarrow LO^{\bullet} + OH^{\bullet}$	$2k_{6}$	$1 \epsilon - 1 \left(\mu^2 \mu^2 \mu^2 \right)$
(7)	$MO_2^{\bullet} + InH \rightarrow In^{\bullet} + MOOH$	<i>k</i> ₇	(7)	$LO_2^{\bullet} + InH \rightarrow In^{\bullet} + LOOH$	<i>k</i> ₇	$\lg k = \lg k_0 - \frac{1}{2,3k_{\rm B}T} \cdot \frac{\varepsilon - 1}{2\varepsilon + 1} \left(\frac{{\mu_1}^2}{r_1^3} + \frac{{\mu_2}^2}{r_2^3} - \frac{{\mu_{\neq}}^2}{r_{\neq}^3} \right)$
(8)	$MO_2^{\bullet} + In^{\bullet} \rightarrow$ molecular products	<i>k</i> ₈	(8)	$LO_2^{\bullet} + In^{\bullet} \rightarrow$ molecular products	<i>k</i> ₈	$2, 3\kappa_{B1} 2c+1 (r_1 r_2 r_{\neq})$

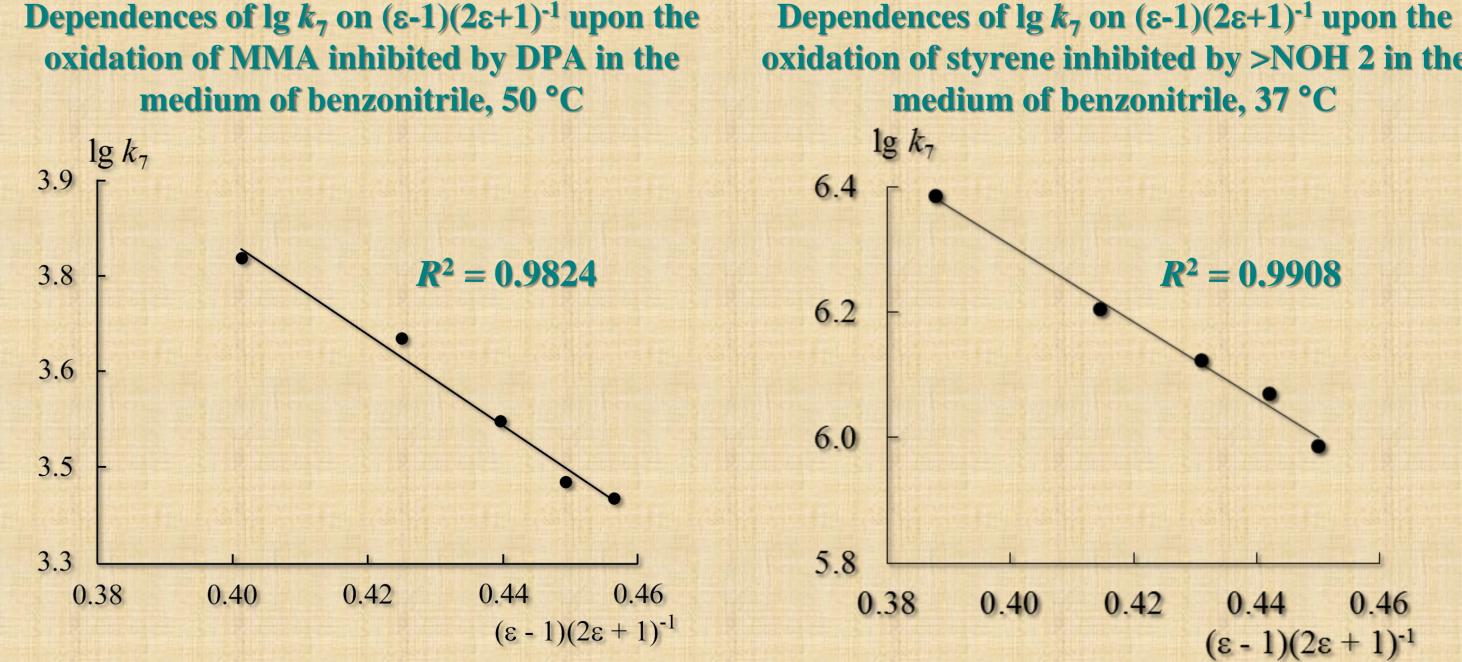

Chain initiation

Dependence of W_0 during the auto-oxidation of LH on its concentration in chlorobenzene;

Dependence of lg k_{02} on $(\varepsilon - 1)(2\varepsilon + 1)^{-1}$ upon the autooxidation of LH in the mixture of bezonitrile

Chain propagation

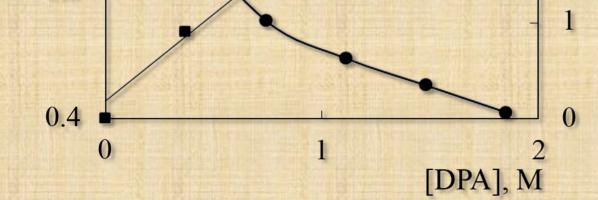

Dependences of lg $(k_2k_6^{-1/2})$ on $(\varepsilon - 1)(2\varepsilon + 1)^{-1}$ upon the oxidation



Dependence of MMA inhibited oxidation rate on [DPA] in benzonitrile (1) and its anamorphosis (2), 50 °C $W \cdot 10^6, \, {\rm M} \cdot {\rm s}^{-1}$ $W_0/W-W/W_0$ 1.6 $2k_7$ [InH₀] 1.2 0.8

Linear chain termination (inhibited oxidation)

The research was performed with the financial support of RSF grant No. 14-23-00018


oxidation of styrene inhibited by >NOH 2 in the

Comparison of the values of $k_{7(0)}$ and K for MMA and aromatic amines calculated from kinetic dependences and IR-spectroscopy data

InH	S	K , M ⁻¹		$k_{7(0)} \cdot 10^{-4}, M^{-1} \cdot s^{-1}$		
111111		Kinetics, 50 °C	IR, 25 °C	Kinetics, 50 °C	IR, 25 °C	
	AcN	0.30	0.35	0.92	1.04	
DPA	NB	0.21	0.13	0.99	0.85	
	BN	0.56	0.41	0.92	0.78	
	AcN	0.22	0.29	1.08	1.28	
DNA	NB	0.12	0.10	1.05	1.01	
	BN	0.49	0.38	1.19	1.04	

Values of $k_{7(0)} \cdot 10^{-6}$ (M⁻¹·s⁻¹) upon the oxidation of styrene inhibited by hydroxylamines (>NOH) in the medium of polar solvents

	Polar solvent	>NOH					
		1	2	3			
	AcN	3.11		2.03			
	BN	4.21	3.40	2.52			
	DMSO	0.91	0.82	0.71			

Complexing equilibrium scheme

 $InH + S \xrightarrow{\kappa} InH \cdots S$

complexing

where S is polar solvent,

K is equilibrium constant of

 $k_7 = \frac{k_{7(0)}}{1 + K[S]}$