На правах рукописи

Марушкина Елена Александровна

РЕЛАКСАЦИОННАЯ ДИНАМИКА ВЗАИМОДЕЙСТВИЯ ОСЦИЛЛЯТОРОВ НЕЙРОННОГО ТИПА

05.13.18 – Математическое моделирование, численные методы и комплексы программ

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Ярославль – 2013

Работа выполнена на кафедре компьютерных сетей федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Ярославский государственный университет им. П.Г. Демидова»

Научный руководитель —	доктор физико-математических наук, профессор Глызин Сергей Дмитриевич,
Официальные оппоненты:	Колесов Андрей Юрьевич, доктор физико-математических наук, профессор ФГБОУ ВПО «Ярославский государственный университет им. П.Г. Демидова», профессор кафедры дифференциальных уравнений; Старков Сергей Олегович, доктор физико-математических наук, профессор Обнинский ИАТЭ НИЯУ «МИФИ», заведующий кафедрой компьютерных систем, сетей и технологий
Ведущая организация —	Физический факультет Московского государственного университета им М.В. Ломоносова

Защита состоится «27» декабря 2013 г. в 15:00 на заседании диссертационного совета Д 212.002.05 при Ярославском государственном университете им П.Г. Демидова по адресу: 150000, г. Ярославль, ул. Советская, д. 14.

С диссертацией можно ознакомиться в научной библиотеке Ярославский государственный университет им. П.Г. Демидова по адресу: 150000, г.Ярославль, ул. Полушкина роща, д.1.

Автореферат разослан «26» ноября 2013 г.

Ученый секретарь диссертационного совета

Qnd

Глызин С.Д.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Для качественного описания динамики нервной клетки обычно используются так называемые феноменологические модели, представляющие собой различные упрощения модели Ходжкина-Хаксли. Изучению систем уравнений, описывающих динамику связанных нейронов, посвящено множество работ (A. Hodgkin, A. Huxley, R. FitzHugh, J. Nagumo, J. Rubin, G.B. Ermentrout, N. Koppel, J. Rinzel и т.д.). Главным свойством выбираемой для моделирования нервной клетки системы эволюционных уравнений является наличие у нее устойчивых колебательных решений, соответствующих спайкам нейронов. Объектом изучения данной диссертационной работы является динамика электрического взаимодействия пары осцилляторов нейронного типа с запаздыванием в цепи связи между ними. Для описания нервных клеток выбрана модель ФитцХью-Нагумо, являющаяся упрощением модели Ходжкина-Хаксли и сохраняющая некоторые принципиальные свойства исходной динамической системы. Данное обстоятельство обеспечивает актуальность проведенного в работе исследования. Важно отметить особую роль запаздывания в цепи связи между осцилляторами, которое позволяет объяснить ряд новых эффектов, наблюдаемых в динамике нейросистем.

Исследование проблемы динамики нейроподобных систем часто сопровождается решением двух важных задач. Первая — это проблема синхронизации и десинхронизации колебаний. Решение данной задачи тесно связано с большим количеством медицинских приложений. Вторая задача проблема ассоциативного хранения информации (ассоциативная память). Разрабатываемая ныне модель ассоциативной памяти базируется на сосуществовании у некоторых динамических систем, моделирующих нейронную сеть, большого количества устойчивых колебательных режимов. Эти устойчивые режимы кодируют (запоминают) информацию и доступны по ключевой последовательности, определяющей начальное состояние системы. Для решения приведенных выше задач в диссертационной работе проведено изучение простейших ассоциаций нейроподобных осцилляторов с дальнейшим усложнением связи между ними.

Цели работы

Основная цель диссертационной работы заключается в изучении модели функционирования и взаимодействия нервных клеток импульсного типа. Эта модель представляет собой систему нелинейных дифференциальных уравнений с запаздыванием. Отдельное внимание уделено роли запаздывания в цепи связи между осцилляторами.

Методология и методы исследования

В работе используются известные локальные асимптотические методы исследования систем дифференциальных уравнений — методы малого и большого параметра. Методика их применения хорошо развита и изложена в большом числе работ. Следует отметить, что при всем этом развитие аналитических методов для анализа систем нелинейных дифференциальных уравнений с запаздыванием очевидным образом отстает от потребностей приложений, а методики, разработанные для систем обыкновенных дифференциальных уравнений, часто оказываются неприменимыми. В силу принципиальной сложности данных систем особую значимость приобретает разработка новых методов исследования качественного поведения решений.

Научная новизна

Научная новизна работы состоит в следующем:

- Выполнен локальный анализ системы двух слабо связанных осцилляторов типа ФитцХью-Нагумо. Численно найдены области существования и устойчивости разномасштабных колебаний с импульсными пакетами.
- 2. Изучена модель, учитывающая запаздывание в цепи связи между осцилляторами. Найдены статистические характеристики разномасштабных колебаний, возникающих в этой системе.
- 3. Изучена динамика взаимодействия пары осцилляторов ФитцХью-Нагумо с асимметричным взаимодействием.
- 4. Доказано существование и устойчивость релаксационного цикла в уравнении импульсного нейрона, учитывающем три ионных тока. Построены асимптотические формулы периодического решения.

Положения, выносимые на защиту

- 1. Выполнен полный локальный анализ системы двух диффузионно связанных близких друг к другу осцилляторов ФитцХью–Нагумо.
- 2. Показано, что введение запаздывания в элемент связи между осцилляторами позволяет вывести систему из состояния, в котором сосуществуют устойчивый синхронный цикл и несинхронные колебания.
- 3. Изучена динамика взаимодействия пары осцилляторов ФитцХью– Нагумо с асимметричным взаимодействием.

- 4. Доказано существование и устойчивость релаксационного цикла в обобщенной модели импульсного нейрона с двумя запаздываниями. Получены асимптотические формулы периодического решения.
- 5. Вычислены статистические характеристики многомасштабных колебательных режимов в системе связанных осцилляторов с запаздыванием.

Теоретическая и практическая значимость работы

Полученные в диссертационной работе результаты представляют интерес при построении нейронных сетей в случае, когда элементы сети моделируются уравнениями с запаздыванием. В работе учитывается запаздывание между элементами сети. Метод разделения многомасштабных колебаний с помощью оценки величины статэнтропии, разработанный в диссертации, может быть использован для широкого класса задач нейродинамики.

Личный вклад соискателя

Все основные результаты получены автором самостоятельно. Постановка задач и интерпретация результатов, представленных в диссертационной работе, выполнялись совместно с научным руководителем. Из работ, выполненных в соавторстве, в диссертацию включены результаты, полученные лично автором при исследовании поставленных задач.

Апробация работы

Основные результаты работы были представлены на следующих научных конференциях:

Всероссийская выставка научно-технического творчества молодежи (HTTM-2009, HTTM-2010), Москва, 2009, 2010;

Международный молодежный научный форум «Ломоносов–2010», «Ломоносов–2011» Москва, 2010, 2011;

Воронежская зимняя математическая школа С. Г. Крейна «Современные методы теории функций и смежные проблемы», Воронеж, 2010;

VII Всероссийская научная конференция с международным участием «Математическое моделирование и краевые задачи» (Секция 3: Дифференциальные уравнения и краевые задачи), Самара, 2010;

9-я Международная школа «Хаотические автоколебания и образование структур» (ХАОС-2010), Саратов, 2010;

First Russian-German Interdisciplinary Workshop on the structure and dynamics of matter, Berlin, 2010;

Всероссийская конференция «Дифференциальные уравнения и их приложения», Самара, 2011;

VIII Всероссийская научная конференция с международным участием «Математическое моделирование и краевые задачи» (Секция 3: Дифференциальные уравнения и краевые задачи), Самара, 2011;

Девятнадцатая международная конференция «Математика. Компьютер. Образование», Дубна, 2012;

Международная научная конференция, посвященная 35-летию математического факультета и 25-летию факультета ИВТ ЯрГУ им.П.Г.Демидова, Ярославль, 2012;

16-th International Conference-School «Foundation and Advances in Nonlinear Science» and Advances in Nonlinear Photonics (International Symposium), Minsk, 2012;

The International Conference «Mathematical modeling and computational physics» (MMCP-2013), Dubna, 2013.

В ходе работы над диссертацией разработан «Программный комплекс численной оценки инвариантных размерностных характеристик многомасштабных колебательных режимов нейродинамических моделей», получено свидетельство о государственной регистрации программы для ЭВМ № 2011616515, РОСПАТЕНТ, Москва, 2011.

Частично результаты диссертационной работы получены в процессе выполнения работ по гранту ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы: поисковая научно-исследовательская работа «Динамика взаимодействия осцилляторов нейронного типа с запаздыванием в цепи связи между ними», 2010–2011 г. и гранту РФФИ № 12-01-31527.

Кроме того, результаты диссертации неоднократно докладывались на семинаре «Нелинейная динамика и синергетика» кафедры математического моделирования Ярославского государственного университета им. П.Г. Демидова.

Публикации

По теме диссертации автором опубликовано 5 статей и 11 тезисов докладов, в том числе 3 статьи в рецензируемых журналах, рекомендованных ВАК. Список публикаций приведен в конце автореферата.

Структура и объем работы

Диссертация состоит из введения, трех глав, заключения и списка литературы, содержащего 65 наименований. Диссертация содержит 25 рисунков. Общий объем диссертации составляет 101 страница.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении приводится общая характеристика работы, описана постановка задачи, а также изложено содержание диссертации по главам и краткий обзор литературы по исследуемой в работе тематике.

Первая глава диссертационной работы посвящена изучению динамики слабого взаимодействия пары осцилляторов типа ФитцХью–Нагумо, в которой учтена конечность времени прохождения импульса по цепи связи между ними. В пункте 1.1 кратко описываются основные биологические процессы формирования нервного импульса, возникающего при взаимодействии нейронов, и ставится основная задача о слабом взаимодействии пары связанных осцилляторов типа ФитцХью—Нагумо. Пункт 1.2 посвящен локальному анализу парциального осциллятора, моделирующего динамику уединенной нервной клетки. Для этого рассмотрена предложенная ФитцХью¹ и Нагумо² система обыкновенных дифференциальных уравнений:

$$\dot{v} = v - \frac{1}{3}v^3 - w + I, \quad \dot{w} = p(v + a - bw),$$
 (1)

в которой v(t) — нормированный мембранный потенциал, переменная w(t) моделирует ток активации, а параметр I — постоянный ток.

Система (1) является упрощением модели Ходжкина—Хаксли³, которая описывает процесс формирования нервного импульса. В ней выбраны 3 основных ионных потока: поток натрия, поток калия и независимый от времени поток утечки.

В пунктах 1.3–1.4 диссертационной работы рассмотрена пара слабо связанных осцилляторов типа ФитцХью—Нагумо, в которой учтена конечность времени прохождения импульса по цепи связи между ними

$$\dot{v}_{1} = v_{1} + v_{*} - \frac{(v_{1} + v_{*})^{3}}{3} - (w_{1} + w_{*}) + I + \varepsilon D(v_{2}(t-h) - v_{1}),$$

$$\dot{w}_{1} = p(v_{1} + v_{*} + a - b(w_{1} + w_{*})),$$

$$\dot{v}_{2} = v_{2} + v_{*} - \frac{(v_{2} + v_{*})^{3}}{3} - (w_{2} + w_{*}) + I + \varepsilon D(v_{1}(t-h) - v_{2}),$$

$$\dot{w}_{2} = p(v_{2} + v_{*} + a - b(w_{2} + w_{*})).$$
(2)

 $^{^{1}}$ FitzHugh R. Threshold and plateaus in the Hodgkin-Huxley nerve equations / R. FitzHugh // The Journal of Generical Physiology. -1960. - V. 43. - P. 867-896.

 $^{^2}Nagumo$ J., Arimoto S., Youshizawa S. An active pulse transmission line simulating nerve axon / J. Nagumo, S. Arimoto, S. Youshizawa // Proc IRE. - 1962. - V. 50. - P. 2061–2070.

³Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and application to conduction and excitation in nerve / A. L. Hodgkin, A. F. Huxley // Journal Physiol. - 1952. - V. 117. - P. 500-544.

Здесь $v_1(t)$, $v_2(t)$ — нормированные мембранные потенциалы; переменные $w_1(t)$, $w_2(t)$ моделируют ток активации, а параметр I — постоянный ток. В системе (2) начало координат сдвинуто в точку ненулевого состояния равновесия $(v_*, w_*)^T$. Кроме того, параметр a системы (2) выбран близким к критическому значению для колебательной потери устойчивости этого состояния равновесия так, что $a = a_{\rm KP} - \varepsilon$, где $a_{\rm KP} = bI + \sqrt{1 - pb}(3 - pb^2 - 2b)/3$. Параметр надкритичности ε считается малым положительным.

При критическом значении параметра *a* компоненты состояния равновесия $(v_*, w_*)^T$ допускают следующее представление: $v_* = -\sqrt{1-pb}, \quad w_* = (a_{\rm KP} - \sqrt{1-pb})/b.$

Величина εD (D > 0) характеризует связь между нервными клетками. Отметим, что эта связь пропорциональна малому параметру ε и содержит запаздывание h.

В пункте 1.3 величина запаздывания h в элементе связи между осцилляторами предполагается нулевой. А пункт 1.4 посвящен изучению новых эффектов, возникающих в рассматриваемой системе при введении запаздывания в цепь обратной связи осцилляторов. В обоих случаях проведен полный локальный асимптотический анализ и иллюстрирующий его численный эксперимент, позволяющие исследовать характер изменения сценариев фазовых перестроек систем уравнений. Кроме того, отдельно исследовалась задача о сосуществовании однородного (синхронного) и неоднородных режимов. Отметим, что данная задача изучалась ранее в ряде статей, однако в основном при исследовании применялись методы большого параметра либо численные методы. В данной диссертационной работе для локального исследования построения построения нормальных форм.

В целях получения нормальной формы системы (2) выполнена следующая замена:

$$(v_j, w_j)^T = \sqrt{\varepsilon} \left(z_j(s) e^{i\omega_0 t} \mathbf{e} + \bar{z}_j(s) e^{-i\omega_0 t} \bar{\mathbf{e}} \right) + \varepsilon u_{1j}(s, t) + \varepsilon^{3/2} u_{2j}(s, t) + \dots, \quad (3)$$

где $j = 1, 2, s = \varepsilon t$, $\mathbf{e} = (1, pb - i\sqrt{p - p^2b^2})^T$ – собственный вектор матрицы линейной части каждого из осцилляторов, соответствующий собственному числу $i\omega_0$, где $\omega_0 = \sqrt{p - p^2b^2}$. На третьем шаге алгоритма из условий разрешимости задач для $u_{2j}(s, t)$ в классе периодических функций была получена следующая нормальная форма:

$$z_1' = \varphi z_1 + d|z_1|^2 z_1 + c(z_2 e^{-i\omega_0 h} - z_1), z_2' = \varphi z_2 + d|z_2|^2 z_2 + c(z_1 e^{-i\omega_0 h} - z_2),$$
(4)

где штрихом обозначена производная по s, а параметры φ , d и c определяются по формулам:

$$\begin{aligned} \varphi &= \varphi_0 + i\psi_0 = \frac{1}{pb^2 - 1} \sqrt{\frac{1 - pb}{p - p^2 b^2} (ipb - \sqrt{p - p^2 b^2})}, \\ d &= d_0 + ic_0 = \frac{1}{2} + \frac{1 - b}{pb^2 - 1} + i \frac{\sqrt{p - p^2 b^2} (-4 + bp(7 + 3b(-2 + pb)))}{6p(pb^2 - 1)^2}, \\ c &= ke^{i\delta} = D\left(\frac{1}{2} - \frac{ipb}{2\sqrt{p - p^2 b^2}}\right). \end{aligned}$$

$$(5)$$

В полученной нормальной форме (4) при помощи стандартных замен: $z_j = \sqrt{-\varphi_0/d_0}\xi_j e^{i\varphi_j} \ (j = 1, 2), \ \varphi_0 s \to s, \ b_0 = c_0/d_0, \ \xi_j \to \theta\xi_j \ u \ \theta^2 s \to s, \ rde \ \theta = \sqrt{1 - k(\cos \delta - \cos \delta^*)}$ и дополнительном условии $1 - k(\cos \delta - \cos \delta^*) > 0$ выполнен переход к следующей системе амплитудных и фазовых переменных:

$$\begin{aligned} \xi_1' &= (1 - \varkappa \cos \delta^* - \xi_1^2) \xi_1 + \varkappa \xi_2 \cos \left(\alpha + \delta^*\right), \\ \xi_2' &= (1 - \varkappa \cos \delta^* - \xi_2^2) \xi_2 + \varkappa \xi_1 \cos \left(-\alpha + \delta^*\right), \\ \alpha' &= -b_0 (\xi_2^2 - \xi_1^2) + \varkappa \left(\frac{\xi_1}{\xi_2} \sin \left(-\alpha + \delta^*\right) - \frac{\xi_2}{\xi_1} \sin \left(\alpha + \delta^*\right)\right), \end{aligned}$$
(6)

где $\varkappa = \frac{k}{\varphi_0 \theta^2}$. Отметим, что параметр $\delta^* = \delta - \omega_0 h$ при изменении запаздывания *h* может принимать значения в широком диапазоне.

Для системы (4) справедливо следующее утверждение:

Теорема о соответствии. Предположим, что система (4) имеет некоторый экспоненциально орбитально устойчивый или дихотомичный цикл (тор). Тогда найдется такое достаточно малое $\varepsilon_0 > 0$, что при всех $0 < \varepsilon \leq \varepsilon_0$ исходная система (2) имеет цикл (двумерный инвариантный тор) с теми же свойствами устойчивости, асимптотика которого задается формулами (3).

Для системы (6) было определено разбиение ее плоскости параметров b_0 и δ на области с различными сценариями фазовых перестроек⁴ (см. рис. 1). На рисунке 1 это разбиение определяется кривыми с номерами от 1 до 6. В частности, кривая с номером 1 представляет собой график зависимости $b_0 = -\operatorname{ctg} \delta$. Для значений b_0 и δ , расположенных ниже этой кривой, состояние равновесия $(1, 1, 0)^T$ устойчиво при любом положительном \varkappa . Кривые

⁴*Глызин, С. Д.* Сценарии фазовых перестроек одной конечноразностной модели уравнения "реакциядиффузия"/ *С. Д. Глызин* // Дифференциальные уравнения. — 1997. — Т. 33, № 6. — С. 805–811.

Рис. 1. Разбиение плоскости параметров на области с разными сценариями фазовых перестроек

под номерами два и три разбивают плоскость параметров таким образом, что для значений b_0 и δ^* между кривыми два и три система (6) имеет при $\varkappa > \varkappa_{\rm kp}$ неоднородные состояния равновесия A, B, C, D, а для других областей таких докритических состояний нет. На кривой, отмеченной числом четыре, лежат значения параметров, при которых равна нулю вещественная часть ляпуновской величины, вычисленной для неоднородного состояния равновесия $(\xi^*, \xi^*, \pi)^T$ в критической точке потери устойчивости ($\varkappa = \varkappa_{\pi,2}$), это означает, что при значениях b и δ^* выше этой кривой при увеличении \varkappa рождается устойчивый цикл, а ниже нее в состояние равновесия $(\xi^*, \xi^*, \pi)^T$ стягивается неустойчивый цикл. Кривая под номером пять представляет собой функцию $b = -\text{ctg} 2\delta^*$, для значений b и δ^* выше этого графика состояние равновесия $(\xi^*, \xi^*, \pi)^T$ теряет устойчивость колебательным образом. Кривая шесть соответствует равенству нулю вещественной части ляпуновской величины, вычисленной для симметричных состояний равновесия A и B, поэтому для значений b_0 и δ^* ниже этой кривой состояния A и B мягко теряют устойчивость с рождением устойчивых циклов C_A и C_B , а выше этой кривой в состояния A и B стягиваются неустойчивые циклы и потеря устойчивости происходит жестко.

Формулы (5) позволяют при известных p, h и b определить значения величин b_0 и δ^* . В связи с этим удобно, зафиксировав величины p и h и изменяя b, построить параметрически заданную равенствами (5) кривую на плоскости δ^* , b_0 . Числами 7, 8 и 9 обозначены кривые, получающиеся при h = 0 и p = 0.8, p = 0.08 и p = 0.27 соответственно.

Если в свою очередь зафиксировать параметр p = 0.27, то при h = 0, h = 0.287и h = 0.747 могут быть получены кривые 10, 11 и 12 соответственно (эти линии изображены на рис. 2). На кривой 10 буквами A^0 и B^0 обозначены точки, в которых она пересекает линии 1 и 3. На кривой 11 точки, соответствующие тем же значениям параметра b, обозначены A' и B'. Запаздывание для линии 11 подобрано так, чтобы точка А' попала на кривую 3. Тем самым, за счет подходящего выбора запаздывания весь участок кривой 10, лежащий между кривыми 1 и 3, переходит в области с существенно иными сценариями фазовых перестроек.

Рис. 2. Зависимость b_0 от δ^*

В диссертации приведены примеры различных сценариев фазовых перестроек, возникающих при изменении бифуркационного параметра \varkappa . Выбрано значение b = 0.3823, для которого при h = 0 параметры системы (6) оказываются равными $\delta^* = -0.2$, $b_0 = 8.33954$, а при h = 0.287 и том же значении b имеем $\delta^* = -0.3461$, $b_0 = 8.33954$. Соответствующие точки на кривых 10, 11 отмечены звездочками. В пунктах 1.3 и 1.4 работы для выбранных значений параметров определены сценарии фазовых перестроек системы (6).

Показано, что в случае отсутствия запаздывания при выборе параметров системы (6), соответствующих области плоскости δ^* , b_0 , лежащей между кривыми 1 и 3, у нормальной формы (6) сосуществуют устойчивое однород-

ное состояние равновесия и два симметричных орбитально устойчивых цикла. Тем самым, из сформулированной выше теоремы о соответствии сделан вывод о том, что у исходной системы (2) также сосуществуют устойчивый синхронный цикл и пара симметричных двухмерных торов.

Для запаздывания h = 0.287 и выбранных коэффициентов нормальной формы (6): $\delta^* \approx -0.3461$, $b_0 \approx 8.3395$ наряду с однородным состоянием равновесия не могут сосуществовать другие устойчивые режимы. На данном этапе исследования сформулирован простой способ ухода из области, где сосуществуют устойчивые синхронные периодические колебания и более сложные несинхронные режимы. Как оказалось, для этого достаточно увеличить подходящим образом параметр запаздывания.

Отметим, что у исходной системы, как и ее нормальной формы, увеличение параметра h приводит к изменению сценария фазовых перестроек. Наиболее же важным результатом является тот факт, что подходящее увеличение запаздывания позволяет при тех же или близких значениях параметра связи перейти к ситуации, в которой синхронные колебания не могут сосуществовать с периодическими или квазипериодическими несинхронными режимами.

Следующий пункт 1.5 посвяшен изучению локальной динамики взаимодействия пары осцилляторов типа ФитцХью—Нагумо с асимметричным взаимодействием:

$$\dot{x}_1 = x_1 - x_1^3/3 - y_1 + \gamma_1 x_2, \quad \dot{y}_1 = \varepsilon (x_1 + a_1), \dot{x}_2 = x_2 - x_2^3/3 - y_2 - \gamma_2 x_1, \quad \dot{y}_2 = \varepsilon (x_2 + a_2).$$
(7)

Здесь переменные $x_1(t)$, $x_2(t)$ — нормированные мембранные потенциалы нервной клетки. Параметры $\gamma_1 > 0$, $\gamma_2 > 0$ характеризуют связь между нервными клетками, а $0 < \varepsilon << 1$ — фиксирован. Состояние равновесия системы (7) единственно: $x_1^* = -a_1$, $x_2^* = -a_2$, $y_1^* = a_1^3/3 - a_1 - \gamma_1 a_2$, $y_2^* = a_2^3/3 - a_2 + \gamma_2 a_1$. Параметры a_1 и a_2 выбраны так, что характеристический многочлен исходной задачи имеет две пары чисто мнимых корней $\pm i\omega_1$, $\pm i\omega_2$. Рассмотрена возмущенная задача в близком к критическому случае $a_1 = \sqrt{2-\mu}\cos\varphi$, $a_2 = \sqrt{2-\alpha\mu}\sin\varphi$. Отметим, что параметр $0 < \mu << \varepsilon$.

Для построения нормальной формы применен стандартный алгоритм и выполнена следующая замена:

$$(x_j - x_j^*, y_j - y_j^*)^T = \sqrt{\mu} \Big(z_1(s) \exp(i\omega_1 t) c_1 + z_2(s) \exp(i\omega_2 t) c_2 + \text{k.c.} \Big) + \mu x_{1i}(s, t) + \mu^{3/2} x_{2i}(s, t) + \dots, \quad (8)$$

где $j = 1, 2, i = 1, \ldots, 4, s = \mu t$ — медленное время. Под к.с. подразумевается выражение, комплексно сопряженное данному в той же скобке, c_1 и c_2 собственные вектора матрицы линейной части системы, соответствующие собственным числам $i\omega_1$ и $i\omega_2$.

На третьем шаге алгоритма в результате приравнивания коэффициентов при $\mu^{3/2}$ из условий разрешимости задач для $u_{2i}(s,t)$ среди двухчастотных по t с частотами ω_1 и ω_2 функций была получена укороченная нормальная форма:

$$\xi_1' = \varphi_1 \xi_1 + (a_{11}\xi_1^2 + a_{12}\xi_2^2)\xi_1, \quad \xi_2' = \varphi_2 \xi_2 + (a_{21}\xi_1^2 + a_{22}\xi_2^2)\xi_2, \tag{9}$$

где штрихом обозначена производная по s, ξ_1 и ξ_2 — амплитудные переменные. При фиксированных значениях параметров системы (7): $\varepsilon = 0.5$, $\gamma_1 = 0.8$, $\gamma_2 = 0.7$, на промежутке изменения $\varphi \in (0.3626, 1.2074)$, выбранном исходя из условия существования у характеристического многочлена двух пар корней на мнимой оси, все величины a_{11} , a_{12} , a_{21} , a_{22} отрицательны, поэтому нормальная форма (9) диссипативна.

Дальнейшее исследование нормальной формы посвящено изучению существования и устойчивости ее состояний равновесия. Кроме нулевого состояния равновесия у системы (9) могут существовать еще три неподвижные точки: $(0, \sqrt{-\varphi_2/a_{22}}), (\sqrt{-\varphi_1/a_{11}}, 0), (\sqrt{\Delta_1/\Delta}, \sqrt{\Delta_2/\Delta}),$ где $\Delta = a_{11}a_{22} - a_{12}a_{21}, \Delta_1 = -\varphi_1a_{22} + \varphi_2a_{12}, \Delta_2 = -\varphi_2a_{11} + \varphi_1a_{21}$. В работе исследованы зависимости $\frac{\Delta_1}{\Delta}(\varphi)$ и $\frac{\Delta_2}{\Delta}(\varphi)$ для изучаемой нами системы. При этом $\frac{\Delta_1}{\Delta}(\varphi) > 0$ при $\varphi \in (\varphi^*, \varphi^{**}), \frac{\Delta_1}{\Delta}(\varphi) < 0$ при $\varphi \in (0.3626, \varphi^*) \cup (\varphi^{**}, 1.2074), \varphi^* \approx 0.5052, \varphi^{**} \approx 1.0903; \frac{\Delta_2}{\Delta}(\varphi) > 0$ при всех $\varphi \in (0.3626, 1.2074)$. Отметим, что $\Delta(\varphi) < 0$ при всех φ из рассматриваемого промежутка.

В зависимости от значения φ в системе (9) могут наблюдаться две различные ситуации:

1. Пусть $\varphi \in (\varphi^*, \varphi^{**})$, тогда величины $\frac{\Delta_1}{\Delta}, \frac{\Delta_2}{\Delta}$ положительны и нормальная форма (9) имеет кроме нулевого состояния равновесия еще три неподвижные точки, причем состояние $(\sqrt{\Delta_1/\Delta}, \sqrt{\Delta_2/\Delta})$ неустойчиво и его устойчивое многообразие разделяет области устойчивости двух состояний равновесия, лежащих на координатных осях. В этом случае у исходного уравнения (7) сосуществуют устойчивые одночастотные колебания с частотами ω_1 и ω_2 .

2. Пусть теперь $\varphi \in (0.3626, \varphi^*) \cup (\varphi^{**}, 1.2074)$, то есть величины $\frac{\Delta_1}{\Delta}, \frac{\Delta_2}{\Delta}$ имеют разные знаки. Тогда система (9) кроме нулевого имеет еще два состояния равновесия $(0, \sqrt{-\varphi_2/a_{22}}), (\sqrt{-\varphi_1/a_{11}}, 0)$, одно из которых устойчиво.

В этом случае у исходного уравнения (7) от состояния равновесия ответвляется одночастотный режим.

Полученные асимптотические результаты дополнены численным анализом. Для фиксированных значений ε , γ_1 и γ_2 и $\varphi \in (0.5052, 1.0903)$ при $\mu = 0$ имеем критические значения $a_1 = \sqrt{2} \cos \varphi$ и $a_2 = \sqrt{2} \sin \varphi$, при которых в системе (7) рождаются два устойчивых цикла. С дальнейшим увеличением возмущения μ один из циклов превращается в устойчивый тор, который сосуществует со вторым циклом в достаточно широкой области изменения параметра. Далее тор исчезает и остается один устойчивый цикл, который претерпевает каскад бифуркаций удвоения периода, приводящий к образованию хаотического аттрактора. Установившийся хаотический режим впоследствии исчезает, а дальнейшее увеличение μ приводит к устойчивому релаксационному циклу.

Во второй главе диссертационной работы изучается сингулярно возмущенное скалярное нелинейное дифференциально-разностное уравнение, являющееся математической моделью отдельного импульсного нейрона и содержащее одну функцию без запаздывания и две функции с различными запаздываниями.

Автоколебательным процессам в нейронных системах присуща одна характерная особенность, получившая название bursting-эффекта. Эта особенность заключается в чередовании пакетов импульсов (наборов из нескольких подряд идущих интенсивных всплесков) с относительно спокойными участками изменения мембранных потенциалов. Исследованию "bursting behavior" посвящено обширное количество работ и, как правило, для математического моделирования этого эффекта привлекаются сингулярно возмущенные системы обыкновенных дифференциальных уравнений с одной медленной и двумя быстрыми переменными, в которых при определенных условиях могут существовать устойчивые bursting-циклы (периодические движения с bursting-эффектом). Однако возможен и другой подход к решению данной проблемы, связанный с учетом запаздываний по времени.

Для формирования модели импульсного нейрона были взяты рассуждения, аналогичные приведенным в работе С.А. Кащенко, В.В. Майорова⁵. Отметим, что во внимание берутся только калиевые и натриевые токи, в качестве начала отсчета принимается уровень наибольшей поляризации мембраны и отклонение потенциала от этого уровня обозначается u(t). Уравнение баланса токов при условии пренебрежения токами утечки записывается

⁵Кащенко, С.А. Модели волновой памяти / С.А. Кащенко, В.В. Майоров. — М.: Книжный дом "ЛИБРОКОМ". — 2009. — 288 с.

в виде:

$$c\dot{u} = I_{\rm Na} + I_{\rm K},\tag{10}$$

где коэффициент пропорциональности c > 0 обычно называется емкость. Относительно токов $I_{\rm Na}$ и $I_{\rm K}$ сделаем следующее предположение.

Условие 1. Считаем, что токи I_{Na} и I_K можно представить следующим образом:

$$I_{Na} = \chi_{Na}(u) \cdot u, \qquad I_K = \chi_K(u) \cdot u, \tag{11}$$

где $\chi_{Na}(u)$ и $\chi_K(u)$ – функции, определяющие натриевую и калиевую проводимости.

В состоянии сильной поляризации мембранный потенциал медленно растет, поэтому считаем выполненным следующее предположение.

Условие 2.

$$\chi_{Na}(0) + \chi_K(0) > 0. \tag{12}$$

Для формирования содержательной модели с двумя запаздываниями, обладающей bursting-эффектом, необходимо сделать несколько дополнительных предположений.

Условие 3. Считаем, что $\chi_{Na}(0) = -\alpha_0$, и при $u \to \infty \chi_{Na}(u) \to -\beta_0$, причем $\beta_0 > \alpha_0$, где α_0, β_0 – положительные константы.

Условие 4. Полагаем $\chi_K(0) = \alpha_1, \ u \ \chi_K(u) \to -\beta_1 \ npu \ u \to \infty, \ rde$ α_1, β_1 – также положительные константы.

Важной характеристикой ионных каналов является запаздывание величины их проводимости по времени.

Условие 5. Будем считать, что величина калиевой проводимости запаздывает по отношению к текущему значению мембранного потенциала и примем это запаздывание за единицу времени, то есть полагаем, что $\chi_K = \chi_K(u(t-1))$, запаздывание величины натриевой проводимости примем за 0 < h < 1 и положим, что $\chi_{Na} = \chi_{Na}(u(t-h))$.

При условиях 1–5 и предположении о существовании дополнительного тока без запаздывания из (10) можно получить⁶ следующую модель:

$$\dot{u} = \lambda [r(u) + f(u(t-h)) - g(u(t-1))]u.$$
(13)

Здесь u(t) > 0 – мембранный потенциал нейрона, параметр $\lambda > 0$ характеризует скорость протекания электрических процессов в системе и предполагается большим, а параметр h фиксирован и принадлежит интервалу

⁶Глызин С. Д., Колесов А. Ю., Розов Н. Х. Моделирование эффекта взрыва в нейронных системах // Матем. заметки. 2013. Т. 93, № 5. С. 684–701.

(0,1). Относительно функций $r(u), f(u), g(u) \in C^1(\mathbb{R}_+), \mathbb{R}_+ = \{u \in \mathbb{R} : u \ge 0\}$, предполагаем, что они обладают свойствами:

$$f(0) = 1, \ g(0) = 0, \ r(0) = -r_0;$$

$$f(u) = -a_0 + \mathcal{O}(1/u), \ uf'(u) = \mathcal{O}(1/u), \ g(u) = b_0 + \mathcal{O}(1/u),$$

$$ug'(u) = \mathcal{O}(1/u), \ r(u) = r_1 + \mathcal{O}(1/u), \ ur'(u) = \mathcal{O}(1/u),$$

$$\Pi p_{\mathrm{H}} \ u \to +\infty,$$
(14)

где a_0, b_0, r_0, r_1 — положительные константы. Условие 2 при этом модифицируется и принимает вид

$$-r_0 + 1 > 0, \tag{15}$$

кроме того, потребуется выполнение неравенства

$$r_1 - a_0 < 0. (16)$$

Основные результаты, представленные во второй главе работы, касаются релаксационных свойств уравнения (13). Важно отметить, что полученная модель является вполне содержательной, поскольку при подходящем выборе параметров она обладает как режимами с одним всплеском на периоде (например, при h = 1), так и любым наперед заданным количеством таких всплесков.

При исследовании вопроса о существовании и устойчивости у уравнения (13) релаксационного bursting-цикла удобно сделать в (13) замену $u = \exp(\lambda x)$. Указанная замена преобразует интересующее нас уравнение к виду

$$\dot{x} = R(x,\varepsilon) + F(x(t-h),\varepsilon) - G(x(t-1),\varepsilon),$$
(17)

где $R(x,\varepsilon) = r(\exp(x/\varepsilon)), F(x,\varepsilon) = f(\exp(x/\varepsilon)), G(x,\varepsilon) = g(\exp(x/\varepsilon)), \varepsilon = 1/\lambda \ll 1$. Далее, из свойств (14) функций r(u), f(u), g(u) вытекает, что

$$\lim_{\varepsilon \to 0} R(x,\varepsilon) = H_1(x), \ \lim_{\varepsilon \to 0} F(x,\varepsilon) = H_2(x), \ \lim_{\varepsilon \to 0} G(x,\varepsilon) = H_3(x),$$
$$H_1(x) = \begin{cases} -r_0 & \text{при } x < 0, \\ r_1 & \text{при } x > 0, \end{cases} \quad H_2(x) = \begin{cases} 1 & \text{при } x < 0, \\ -a_0 & \text{при } x > 0, \end{cases} \quad (18)$$
$$H_3(x) = \begin{cases} 0 & \text{при } x < 0, \\ b_0 & \text{при } x > 0. \end{cases}$$

Равенства (18), в свою очередь, позволяют перейти от (17) к рассмотрению предельного релейного уравнения с запаздываниями

$$\dot{x} = H_1(x) + H_2(x(t-h)) - H_3(x(t-1)).$$
(19)

Понятие решения уравнения (19) определяется конструктивно. С этой целью фиксируем произвольно натуральное n и предположим, что параметры h, a_0, b_0, r_0, r_1 из (14) удовлетворяют условиям

$$\frac{(a_0 - r_1)(1 - r_0)}{(n+1)(1+a_0)(1-r_0+a_0-r_1)} < h < \left(\frac{n(1+a_0)(1-r_0+a_0-r_1)}{(a_0 - r_1)(1-r_0)} + 1 + \frac{1+a_0}{a_0 - r_1}\right)^{-1},$$
(20)
$$b_0 > 1 + a_0, \quad b_0 > 1 + r_0.$$
(21)

Далее, фиксируем некоторое достаточно малое $\sigma_0 > 0$, рассмотрим множество функций

$$\varphi(t) \in C[-1 - \sigma_0, -\sigma_0], \quad \varphi(t) < 0 \quad \forall \ t \in [-1 - \sigma_0, -\sigma_0], \quad \varphi(-\sigma_0) = -\sigma_0(1 - r_0)$$
(22)

и обозначим через $x_{\varphi}(t), t \ge -\sigma_0$, решение уравнения (19) с произвольной начальной функцией (22).

Правая часть уравнения (19) представляет собой кусочно-постоянную функцию и меняется лишь тогда, когда одна из функций x(t), x(t-h) или x(t-1) меняет знак. В частности, при $-\sigma_0 \leq t \leq -\sigma_0 + h$ функция $x_{\varphi}(t)$ задается равенством

$$x_{\varphi}(t) = (1 - r_0)t.$$
 (23)

Данная формула (23) сохраняется до тех пор, пока $x_{\varphi}(t) < 0, x_{\varphi}(t-h) < 0$ и $x_{\varphi}(t-1) < 0$. Тем самым, она заведомо справедлива на отрезке времени $-\sigma_0 \leq t \leq 0$.

При $0 \leq t < 1$ в силу уже проделанных построений имеем $x_{\varphi}(t-1) < 0$ и, следовательно, $H_3(x_{\varphi}(t-1)) = 0$. Таким образом, на данном промежутке времени решение $x_{\varphi}(t)$ удовлетворяет вспомогательному уравнению

$$\dot{x} = H_1(x) + H_2(x(t-h)).$$
 (24)

Свойства уравнения (24) были изучены ранее⁷, в частности, установлено, что любое решение x(t) этого уравнения, такое что x(t) < 0 при $-h \leq t < 0$, x(0) = 0, при всех $t \geq 0$ совпадает с периодической функцией

$$x_{0}(t) = \begin{cases} (r_{1}+1)t & \text{при } 0 \leq t \leq h, \\ (r_{1}-a_{0})(t-h) + (r_{1}+1)h & \text{при } h \leq t \leq t_{0}, \\ -(r_{0}+a_{0})(t-t_{0}) & \text{при } t_{0} \leq t \leq t_{0}+h, \\ (1-r_{0})(t-t_{0}-h) - (r_{0}+a_{0})h & \text{при } t_{0}+h \leq t \leq T_{0}, \end{cases}$$
(25)
$$x_{0}(t+T_{0}) \equiv x_{0}(t),$$

⁷Глызин С. Д., Колесов А. Ю., Розов Н. Х. Релаксационные автоколебания в нейронных системах. І // Дифференц. уравнения. 2011. Т. 47, № 7. С. 919 – 932.

где

$$T_0 = t_0 + h + \frac{r_0 + a_0}{1 - r_0}h, \quad t_0 = \frac{a_0 + 1}{a_0 - r_1}h.$$
(26)

Возвращаясь к исходному уравнению (19), приходим к равенству

$$x_{\varphi}(t) = x_0(t), \quad 0 \leqslant t \leqslant 1.$$

$$(27)$$

Для последующего анализа решения требуется специальная функция $y_0(t)$, являющаяся решением задачи Коши

$$\dot{x} = 1 - r_0 - H_3(x_0(t)), \ x|_{t=0} = 0.$$
 (28)

Привлекая формулы (25), нетрудно увидеть, что при $t \geqslant 0$ она задается соотношениями

$$y_{0}(t) = \begin{cases} -(b_{0} + r_{0} - 1)t & \text{при } 0 \leqslant t \leqslant t_{0}, \\ (1 - r_{0})t - b_{0}t_{0} & \text{при } t_{0} \leqslant t \leqslant T_{0}, \end{cases}$$

$$y_{0}(t) = (k - 1)((1 - r_{0})T_{0} - b_{0}t_{0}) + y_{0}(t - (k - 1)T_{0})$$

$$\text{при } (k - 1)T_{0} \leqslant t \leqslant kT_{0}, \quad k \in \mathbb{N}, \quad k \geqslant 2.$$

$$(29)$$

При рассмотрении очередного отрезка времен
и $1\leqslant t\leqslant 1+h$ показано, что справедлива формула

$$x_{\varphi}(t) = x_0(1) + y_0(t-1), \tag{30}$$

которая сохраняется на отрезке $1 \leq t \leq 2$.

При рассмотрении значений $t \ge 2$ решение $x_{\varphi}(t)$ задается формулой

$$x_{\varphi}(t) = (1 - r_0)(t - T_*), \ T_* = (n+1)(T_0 + \frac{b_0 t_0}{1 - r_0}).$$
 (31)

Из проделанных построений следует, что при $\sigma_0 < T_0 - t_0 + (n+1)b_0t_0 - 1$ функция $x_{\varphi}(t+T_*), -1 - \sigma_0 \leq t \leq -\sigma_0$ принадлежит введенному выше множеству (22). А это значит, что на промежутках $kT_* - \sigma_0 \leq t \leq (k+1)T_* - \sigma_0$, $k = 1, 2, \ldots$ весь описанный выше процесс построения $x_{\varphi}(t)$ повторяется снова и снова. Следовательно, при всех $t \geq -\sigma_0$ каждое решение $x_{\varphi}(t)$ с начальным условием (22) совпадает с одной и той же T_* -периодической функцией $x_*(t)$, задающейся равенствами

$$x_*(t) = \begin{cases} x_0(t) & \text{при } 0 \leq t \leq 1, \\ x_0(1) + y_0(t-1) & \text{при } 1 \leq t \leq 2, \\ (1-r_0)(t-T_*) & \text{при } 2 \leq t \leq T_*, \end{cases} \quad x_*(t+T_*) \equiv x_*(t).$$
(32)

Основным результатом **второй главы** диссертационной работы является следующее утверждение.

Теорема. При всех достаточно малых $\varepsilon > 0$ уравнение (17) имеет единственный орбитально экспоненциально устойчивый цикл $x_*(t,\varepsilon)$, $x_*(-\sigma_0,\varepsilon) \equiv -\sigma_0$ периода $T_*(\varepsilon)$, удовлетворяющий предельным равенствам

$$\lim_{\varepsilon \to 0} \max_{t} |x_*(t,\varepsilon) - x_*(t)| = 0, \quad \lim_{\varepsilon \to 0} T_*(\varepsilon) = T_*.$$
(33)

Третья глава диссертационной работы посвящена численному анализу динамики и оценке инвариантных статистических характеристик аттракторов связанных осцилляторов ФитцХью–Нагумо. В первой главе работы подробно изучена локальная динамика диффузионно слабо связанных осцилляторов такого типа. Численный анализ, предпринятый для системы (2), показал, что в достаточно широкой области значений параметров ее локальные фазовые перестройки происходят в соответствии с фазовыми перестройками нормальной формы (6). Однако, представляется интересным проследить за разрушением локальных сценариев фазовых перестроек и возникновением новых нелокальных устойчивых режимов. В данной главе рассмотрено, как изменяется динамика системы (2) при изменении бифуркационного параметра *а*. Показано, что на границе области применимости локального анализа реализуются сложные устойчивые режимы с характерными пачками импульсов.

Отметим, что решения в этом случае носят сложный неупорядоченный характер. Хаотичность решений в этой ситуации довольно трудно описать, поскольку колебания разномасштабные и стандартные методы оценки, например, ляпуновской размерности и ляпуновских экспонент уже не вполне адекватны. В связи с этим представляется интересным применить некоторые инвариантные статистические показатели для оценки информационной емкости аттракторов систем, а также различения устойчивых колебательных режимов систем. С этой задачей удалось справиться, применяя ряд разработанных Тимофеевым Е.А.⁸ перспективных методов численной оценки энтропийного показателя.

Величина статистической энтропии, которая вычисляется по псевдослучайной величине расстояния между последовательно идущими пачками импульсов в режимах разномасштабных колебаний, наиболее адекватно характеризует процесс их возникновения.

⁸ Тимофеев, Е. А. Статистически оцениваемые инварианты мер / Е. А. Тимофеев // Алгебра и анализ. — 2005. — Т. 17, № 3. — С. 204–236.

Выборка данных для вычисления статистического показателя осуществлялась следующим образом. Пороговым значением амплитуды колебаний выбиралось некоторое число, при превышении которого считалось, что наблюдается высокоамплитудный импульс. В численном эксперименте средний период колебаний большой амплитуды составил менее десяти единиц по t, в связи с этим импульсный пакет считался законченным, если прошло более 20 единиц времени без всплесков. Таким образом, из решения системы (2) по описанными выше правилами удается построить следующий массив данных:

$$\{x_1, \dots, x_N\}\tag{34}$$

для расстояний между пачками импульсов.

В ходе вычисления статических выборок для случайной величины расстояний между пачками импульсов была обнаружена разница между различными режимами, невидимая на взгляд по реализации компонент $v_{1,2}(t)$, $w_{1,2}(t)$. Например, для выбранных значений p = 0, 2 и p = 0, 27 и наличии запаздывания h = 0, 287, а также подходящих остальных параметрах системы (2), при которых реализуются многомасштабные режимы, вид компонент решений $v_1(t)$ не дает возможности различить исследуемые аттракторы. Зато разница достаточно хорошо заметна на графике зависимости между предыдущим и последующим отсчетами в (34). Так, при p = 0, 2 в плоскости $\{x(n), x(n+1)\}$ будет наблюдаться неструктурированное облако точек. В случае p = 0, 27 зависимость x(n+1) от x(n) имеет очевидную внутреннюю структуру.

Далее для таких сложных многомасштабных колебательных режимов была найдена β -статэнтропия, которая является наиболее информативной характеристикой, позволяющей идентифицировать, к какому классу режимов принадлежит исследуемый процесс.

В Заключении обобщаются результаты диссертационной работы, приводятся возможные направления развития и формулируются выводы.

В приложении А приводятся выдержки из программного кода для пакета символьных вычислений Matematica, а также на языке С для среды Builder.

Основные результаты и выводы

1. Выполнен полный локальный анализ системы двух слабо связанных осцилляторов типа ФитцХью-Нагумо. Показано, что в случае отсутствия запаздывания при подходящем выборе параметров у системы сосуществуют устойчивый синхронный цикл и пара симметричных двухмерных торов.

- 2. Изучена динамика пары взаимодействующих осцилляторов ФитцХью-Нагумо в двух случаях: с запаздыванием в цепи связи и с несимметричным взаимодействием.
- 3. Доказано существование и устойчивость релаксационного цикла в обобщенном уравнении импульсного нейрона с двумя запаздываниями. Построены асимптотические формулы периодического решения.
- 4. Изучены статистические характеристики разномасштабных колебаний, возникающих в системе связанных осцилляторов с запаздыванием в цепи связи и без него.

Список публикаций по теме диссертации

Публикации в перечне ведущих рецензируемых научных журналов, рекомендованных ВАК

- Глызин, С. Д. Фактор запаздывания и десинхронизация колебаний связанных осцилляторов ФитцХью–Нагумо / С. Д. Глызин, Е. А. Солдатова⁹ // Моделирование и анализ информационных систем. — 2010. — Т. 17, № 3. — С. 134–143.
- 2. Глызин, С. Д. Пакеты импульсов в системе взаимодействующих осцилляторов с запаздыванием и их статистическая обработка / С. Д. Глызин, Е. А. Марушкина // Моделирование и анализ информационных систем. 2012. Т. 19, № 3. С. 82–96.
- 3. *Глызин, С. Д.* Релаксационные циклы в обобщенной нейронной модели с двумя запаздываниями / *С. Д. Глызин, Е. А. Марушкина* // Моделирование и анализ информационных систем. 2013. Т. 20, № 6. С. 164–185.

Работы, опубликованные в других журналах

- 4. Солдатова, Е.А. Эффект слабой запаздывающей связи для осцилляторов типа ФитцХью–Нагумо / Е.А. Солдатова // Сборник материалов студенческих научных работ городского конкурса «Ярославль на пороге тысячелетия». — Ярославль: Изд-во ЯГТУ, 2008. — С. 15–20.
- 5. Солдатова, Е.А. Динамика взаимодействия осцилляторов типа ФитцХью–Нагумо с запаздывающей связью между ними / Е.А. Солдатова // Современные проблемы математики и информатики: Яросл. гос. ун-т. — Ярославль: ЯрГУ, 2009. — Вып. 10. — С. 71–80.

⁹Фамилия Солдатова изменена соискателем на фамилию Марушкина в связи с заключением брака

- Солдатова, Е. А. Эффект слабой запаздывающей связи для пары осцилляторов типа ФитцХью-Нагумо / Е. А. Солдатова // Сборник материалов I Внутривузовского конкурса инновационных проектов аспирантов и студентов по приоритетным направлениям науки и техники «Молодежь и наука». — Ярославль: ЯрГУ, 2009. — С. 69–79.
- 7. Солдатова, Е.А. Взаимодействие пары осцилляторов ФитцХью-Нагумо с запаздыванием в цепи связи между ними / Е.А. Солдатова // Материалы Международного молодежного научного форума «ЛОМОНОСОВ-2010» — М.: МАКС Пресс., 2010. — 1 электрон. опт. диск (CD-ROM); 12 см. — С. 20–21.
- Солдатова, Е.А. Взаимодействие пары осцилляторов ФитцХью-Нагумо с запаздывающей связью между ними / Е.А. Солдатова // Материалы конференции Воронежской зимней математической школы С. Г. Крейна. — Воронеж: изд. ВГУ, 2010. — С. 142.
- 9. Глызин, С. Д. Эффект запаздывания в цепи связи пары осцилляторов типа ФитцХью-Нагумо / С. Д. Глызин, Е. А. Солдатова // Математическое моделирование и краевые задачи: Труды седьмой Всероссийской научной конференции с международным участием. Ч. 3: Дифференциальные уравнения и краевые задачи. — Самара: СамГТУ, 2010. — С. 75-78.
- 10. Солдатова, Е.А. Взаимодействие пары осцилляторов ФитцХью-Нагумо с запаздывающей связью между ними / Е.А. Солдатова // Материалы IX Международной школы «Хаотические колебания и образования структур» — Саратов: РИО журнала Известия вузов. Прикладная нелинейная динамика, 2010. — С. 88.
- 11. *Марушкина, Е. А.* Локальная динамика пары связанных осцилляторов ФитцХью-Нагумо с «асимметричным» взаимодействием / *Е. А. Марушкина* // Материалы Международного молодежного научного форума «ЛОМОНОСОВ-2011» — М.: МАКС Пресс., 2011. — 1 электрон. опт. диск (CD-ROM); 12 см. — С. 45.
- 12. *Марушкина, Е.А.* Асимметрическое взаимодействие пары осцилляторов ФитцХью-Нагумо / *Е.А. Марушкина* // СамДиф-2011: конференция «Дифференциальные уравнения и их приложения», тезисы докладов. Самара: изд-во Универс групп, 2011.— С. 76.
- 13. Марушкина, Е.А. Локальные бифуркации в системе двух осцилляторов ФитцХью-Нагумо с асимметричным взаимодействием / Е.А. Марушкина // Математическое моделирование и краевые задачи: Труды восьмой Всероссийской научной конференции с международным

участием. Ч. 3: Дифференциальные уравнения и краевые задачи. — Самара: СамГТУ, 2011. — С. 125-128.

- 14. *Марушкина, Е.А.* Программный комплекс численной оценки инвариантных размерностных характеристик многомасштабных колебательных режимов нейродинамических моделей / *Е.А. Марушкина* // Свидетельство о государственной регистрации программы для ЭВМ. — М.: РОСПАТЕНТ, 2011. — № 2011616515.
- 15. *Марушкина, Е. А.* Идентификация импульсных пакетов в системе двух связанных осцилляторов нейронного типа / *С. Д. Глызин, Е. А. Марушкина* // Материалы конференции «Математика. Компьютер. Образование». Дубна, 2012. С. 78.
- 16. Marushkina, E. Co-existence of bursting-cycles in impulse neuron model with delay / E. Marushkina // Foundation and Advances in Nonlinear Science (16-th International Conference-School) and Advances in Nonlinear Photonics (International Symposium): Programm and Book of Abstracts. — Minsk: Publ. Center of BSU, 2012. — P. 64.
- 17. Marushkina, E. Local dynamics of a pair of FitzHugh-Nagumo oscillators with asymmetric interaction / E. Marushkina // The International Conference Mathematical modeling and computational physics (MMCP 2013) — Dubna, 2013 — P. 126–127.

Подписано в печать 25.11.13. Формат 60х84/16. Тираж 100 экз. Заказ 17/13. Отдел оперативной полиграфии ЯрГУ 150000, Ярославль, ул. Советская, 14.